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1. INTRODUCTION
In this note we present a short historical account of the development of
numerical methods for Volterra integral equations of the second kind, with the
main part of the paper (Section 3) covering the period between about 1920 and
the early 1960s. In order to see this development in its proper context we
begin with a section in which we sketch the origins and some of the classical
theory of Volterra integral equations, and we conclude by subsequently
describing the principal areas of current research and a number of recent
automatic computer codes.

The paper is concerned with linear (one-dimensional) Volterra integral equa-
tions of the second kind, ie., equations in the (continuous) function y of the
form

y(@0) = g+ f’K(t,s)y(s)ds, tel:=[0,T], (1.1)
and 0
y(1) = g+ /'(z —5)"y(s)ds, tel, 0<a<l, (1.2)
Their nonlinear counterp:rts are
y@) =g+ /’k(t,s,y(s))ds, tel, (1.3)
and 0
y(0) = glo)+ j'(z —5) %k(t,5,y (s))ds, tel, 0<a<l. (1.4)
o



It will be assumed that the kernels K(t,s) and k(t,s,y) are given continuous
function of their respective variables and (in the nonlinear case) are such that
there exists a unique solution y € C(I) whenever the given function g is in C(J).
(Generalizations to, e.g,, the L,-setting are, of course, possible but will not be
considered here.)

2. A SHORT HISTORY OF VOLTERRA INTEGRAL EQUATIONS

The classical papers of ABEL [1], [2] and of VOLTERRA [89] deal with the ‘inver-
sion of definite integrals’: if g and G are given functions of one and two vari-
ables, respectively, find a (continuous) function y satisfying the first-kind
integral equation

[t =) "Gs)y(s)ds = g@t), tel 0<a<l. 2.1
0

ABEL investigated the special case G(1,s)=1, 0<<a<l, and derived the explicit
inversion formula,

yoy = SOD L1 gy tgsas). 22
0

He shows that equation (2.1), with G(t,s)=I, describes the problem of deter-
mining the equation of a curve in a vertical plane such that the time taken by
a mass point to slide, under the influence of gravity, along this curve from a
given positive height to the horizontal axis is equal to a prescribed (monotone)
function of the height.

The general case was treated by VOLTERRA [89] in 1896: he showed, both for’
=0 and for ae(0,1), that if G(¢,1)50 for all 7€l and if g and G satisfy some
obvious regularity conditions, then (2.1) can be rewritten as a second-kind
integral equation (l.1) whose kernel is continuous on the domain
S := {(t.,5) : 0s<1<T)}. Picard’s method of successive approximations
(proposed in his paper [72] of 1890) can then be employed; it leads, by means
of the iterated kernels:

{
K, (1,5) := fK(t,v)K,, yns)dv (n=2), K (t,5):=K(1,5) .
associated with K(z,s) in (1.1), and the corresponding Neumann series:
0
R(t.s) := D Ky (t.5), (L.5)€S (2.3)
n=1

(which, for K eC(S), converges absolutely and uniformly on S), to the ‘inver-
sion formula’

!
y(0) = g)+ [R(1,5)g(s)ds, tel . (2.4)
0
This inversion formula is no longer explicit, in the sense of (2.2), since the
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resolvent kernel R(z,s) cannot, in general, be found analytically.
We mention in passing that one of the tools used in the above convergence
analysis is Dirichlet’s formula (dating from 1837; cf. [26] ) which states that

jth fl @(1,5)ds Z}dsj(l)(t,s)dt ,
0 0 0 s

provided @ is a continuous function. (This result was generalized in 1908 by
Hurwitz [49] to include integrands containing weakly singular terms like
A —sy !, with A>0, p=>0.)

Particular cases of the second-kind integral equation (1.1) occur already in
the papers by PoissoN [73] of 1826, where the kernel K(z,5) is of convolution
type (i.e., depends only on the difference ¢ —s of its arguments ¢ and s), and by
LiouviLLE [58] of 1837. LIOUVILLE seems to have been the first to employ the
idea of successive approximations in an integral equation, thus anticipating
Picard’s suggestion by some fifty years: in loc.cit. he applied it to the integral
equation he had obtained by rewriting the initial-value problem for a second-
order differential equation, and he so established the uniform convergence of
the resulting sequence of approximants. (His idea was subsequently extended
to ordinary linear differential equations of arbitrary order by CAQUE in 1864;
cf. [14] for bibliographical details.) As far as the general integral equation (1.1)
is concerned, one finds the approach used by VOLTERRA already in the thesis
by LE Roux in 1894 (published as [56] a year later); however, LE Roux did
not investigate the uniform convergence of the resulting Neumann series.

By the turn of the century the classical quantitative theory of linear Volterra
integral equations with regular kernels had essentially been established. Later
work on second-kind integral equations by Evans [31] in 1910/11 concerning
various types of singular kernels, by ANDREOLI [3] in 1914 concerning equa-
tions whose upper limit of integration, ¢, is replaced by some function ®(¢),
and by LALEScO, SCHMIDT, and others at about 1908 (see [22], [42], [25] for
details) was already overshadowed by the fundamental work by FREDHOLM in
1900, 1903 ([33]) and by HILBERT in 1904-1910 ([43]). The latter work on
second-kind integral equations with fixed limits of integration marks the birth
of functional analysis. (Compare the recent studies by MONNA [68] and by
DIEUDONNE [25]; see also [30}.)

3. EARLY NUMERICAL METHODS

The 1idea of replacing the integral in (1.1), with ¢=¢,:=nh
(n=1,..,N; Nh=T), by a finite sum (i.e., by some quadrature formula), thus
obtaining, in a recursive way, approximations {y,} to the exact values {y(s,)},
was introduced by VOLTERRA in [89, pp. 219-220] and, more explicitly, in [90,
pp- 40-45]. Setting

n—1
Y = gty)+h -EK(I,,,tj)yj, n=0,..,.N 3.1)
j=0

.....
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right hand side corresponds to a particular Riemann sum, in which the values
of the integrand are taken at the left endpoints of the subintervals
[t 411, j=0,on — 1) The system (3.1) has the form (Iy —hAy)uy=gn.
Here, Iy is the identity matrix, Ay is a strictly lower triangular matrix whose
nontrivial elements are K(#,,¢;) (0<j<n<N), and gN:=(g(t0),...,g(tN))T. Due
to the special choice of the quadrature approximation the matrix Iy —hAy is
always nonsingular (for more general quadrature formulas this will hold only
for sufficiently large values of N), and hence (3.1) is uniquely solvable. VOL-
TERRA employed this approach not for the actual numerical solution of (1.1)
but to establish, by ‘passing from finiteness to infinity’ (as he called it). the
identities

R(t.s) = K(t,5)+ [K(t,v)R(v,5)dv

t
K(t,5)+ / R(t,Kv,8)dv, (1,5)€S ,

(now generally referred to as Fredholm identities) between the kernel K(z,s). of
(1.1) and the corresponding resolvent kernel R(z,s) introduced in (2.3).

3.1 Related fields

Before we start discussing the early contributions to the numerical solution of
integral equations, beginning with WHITTAKER® s paper [92] of 1918, we shall
recall briefly what was known at that time in two fields closely related to
numerical analysis, namely numerical integration (or quadrature) and the
numerical solution of initial-value problems for ordinary differential equations.
(The reader is referred to GOLDSTINE [36], GAUTsCHI [35], MILNE [67], and to
the forthcoming monograph [40] by HAIRER, NorSETT and WANNER for biblio-
graphical and historical details.)

Numerical quadrature. The origins of numerical quadrature date back to the
work of CAVALIERI (1639), GREGORY (1670), NEwTON (1676), CoTEs (1722),
MACLAURIN (1742), SiMPsON (1743), and EULER (1755). The results of Gauss
(1814) on more general quadrature formulas were extended by JAcoBr (1826)
(who based his theory on the theory of orthogonal polynomials), and by
CHRISTOFFEL (1852). The work of LoBATTO and RADAU on quadrature formu-
las possessing a certain number of prescribed abscissas (either both. or one of
the endpoints of the interval of integration) dates from 1852 and 1880 respec-
tively. Finally, the classical result on the integral representation of the error of
a given quadrature formula, ie. Peano’s kernel theorem, was published in
1914.

Among the classical quadrature formulas it was the one known as Gregory’s



rule which, as will be seen below, played initially the dominant role in the
numerical solution of Volterra integral equations Gregory’s rule in an exten-
sion of the trapezoidal rule, it has the form

[fi)s = b (S0 fen) ot fta )+ 3 f0)| 32
0

— kS [V DS |
i=1

where 1 :=to+kh (h>0), 10:=0, A°f(6):=f(t), Af(h):=ft+1)—flt),
A" :=A(A' ') (with analogous definitions for the backward difference operator
V() :=f(t)— fltk —1)), and where the first few coefficients ¢; in the end
corrections are given by ¢; =1/12, ¢, =1/24, ¢3=19/720, c4=3/360,..., g is a
given integer. Notice that the case ¢ =0 corresponds to the trapezoidal rule.
The above quadrature formula (3.2) is closely related to the Euler-MacLaurin
summation formula (established some seventy years after Gregory’s formula),

[fis)s = [ FAto)+fO)+ ot flty )+ 3 fn)| =
0

m h* B,

-3 [f‘z""’(rn)—f‘z" ”(ro)] + Ru(f) .
k=1 °

where R, (f):= —t,h* *2 B 12f®" T D(8)/(2m +2)! (£€[to,1,]); here, the B;
are the Bernoulli numbers (i.e., the coefficients of ¢//j! in the power series
expansion of t/(e'—1)). Gregory’s rule is obtained by using appropriate
finite-difference approximations to the derivatives of f at the endpoints ¢, and
t,, followed by suitable truncation (compare also KRYLOV [54, pp. 35-38] ).

Initial-value problems. In the development of numerical methods for the
initial-value problem y’ = f(1,y), y(tq)=yo, an idea first encountered in
Euler’s work (1768) was used by GAUCHY in 1840 to derive a viable algorithm
(now generally known as Euler’s method), y,+i:=y,+hf(t,.y,) (n=0).
Among the successors of this method are the one-step methods of RUNGE
(1895), HEUN (1900), and Kutta (1901) one of whose explicit four-stage,
fourth order methods was, until fairly recently, simply referred to as the
Runge-Kutta method. The (explicit) linear multistep methods known as
Adams-Bashforth methods which were introduced by BASHFORTH and ADAMS
in 1883 can also be considered as successors to Euler’s method. The analogous
implicit linear multistep methods (the methods of Adams-Moulton) originate
from the work of MOULTON in the 1920s. Nystrom’s method for approximat-
ing the solution to the initial-value problem for a second-order differential
equation dates from 1926. Except for some earlier surveys, the books by Cot-
LATZ [21] and by MILNE [67] (whose first editions were published in 1951 and
1953 respectively) represent the first comprehensive accounts of numerical
methods for ordinary differential equations.
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Returning to Volterra integral equations and to the paper [92] by WHIT-
TAKER of [918, we observe that his methods for equations of the form (1.1)
with convolution kernel K(z,s)=a(t —s) do not yet reflect the fact that (1.1)
may be viewed as a generalization of the initial-value problem for an ordinary
differential equation, for whose numerical solution one might try to use suit-
able analogues of certain known methods for ordinary differential equations.
Whittaker’s first two methods are based on the assumption that the kernel a(z)
is given in the form of a numerical table. Using De Prony’s method of 1795,
he approximates a(z) by an interpolant which is a linear combination of
exponential functions; its construction involves the solution of a certain non-
linear algebraic equation. The approximation u(¢) to the exact solution is then
of the form

u(t) = g()+ [rt —s)g(s)ds, 1€l ,
0

where r(z) (which may be regarded as an approximation to the resolvent ker-
nel associated with the kernel a(z); cf. (2.4)) is again a linear combination of
exponential functions whose exponents are given by the roots of the above
nonlinear equation and whose coefficients depend on these roots as well as on
the exponents occurring in the interpolant of a(z). In the second method the
interpolant is a polynomial, while in the third method it is assumed that one
knows the Taylor expansion of a(z); this then permits the computation of the
Taylor expansion of the resolvent kernel. In both cases, the exact solution is
approximated by an expression of the form (3.2).

3.2. The methods of Prasad

Multistep methods. The methods proposed by PRASAD [75] in 1924 are the true
ancestors of most of the present-day numerical methods for (1.1) and (1.3);
moreover, they are applicable not only to integral equations with convolution
kernels but to general equations as well. His linear multistep method is based
on the Gregory rule (3.2); for (1.3) it thus assumes the form

Y = g(t,,)+h.zow,,‘jk(t,,,tj,yj). n=qg+1..N, (3.3)
=

where t, :=nh (n=0,..,N; Nh=T), and where the weights {w, j} are easily
obtained from the coefficients characterizing Gregory’s rule (3.2). PRAsSAD
employs the value ¢=4; in addition to yo=g(0) he thus needs the values
V1,Y2.73,¥4 to start the recursion (3.3). These starting values may be obtained
by means of the trapezoidal rule and Simpson’s rule, possibly using smaller
initial sub-intervals in order to attain sufficiently accurate approximations.



Runge-Kutta methods. In order to avoid methods that depend on starting
values, PRASAD shows how the ideas of RUNGE, KUTTA and others can be
adapted to generate approximations at t,=nh to the solution of (1.3). His
starting point is one of the explicit four-stage, fourth-order methods introduced
by KUTTA in 1901: in current notation (i.e., in terms of the so-called Butcher
array: see, e.g., [40] ) this method is characterized by

0j0 0 00O

1 1
3|3 0 00

c|A 2 1
‘i;?:=§—§ 1 00
111 —-11 0
1l 3 3 1
8 8 8 8

Hence, for t€[t,,t, +1] the integral equation (1.3) is discretized by setting

In+1 = ﬁn(tn+l)+h “ bk (ty 11ty tCih, Y,5) (3.4a)
i=1
where the Y,,; are obtained from
- i—1
Y’Li = F"(t"+Cih)+h 'Ea,-’jk(t,, +C,‘h,t" +th, Y’l.j) , (3.4b)
j=1

¢G=1.., m).

Here, m=4, and f‘,,(t) denotes a suitable approximation to the lag term

1,

Fo(0) := g0+ [k(tsy(o)ds, 1€ltnty o] (35)
0

of the equation (1.3), and the numbers b;,c;, and g;; are the elements of the
vectors b,c and of the matrix A4, respectively, in the above array. PRASAD how-
ever, dismisses Runge-Kutta methods of the form (3.4) as being ‘not so good
as’ the method based on Gregory’s rule; they found a renewed interest only
some thirty years later.

We note in passing the the first ‘practical’ application of a method of the
form (3.3) (involving Gregory’s rule (3.2) with 4=0) seems to occur in the
book [20] by CARSON (pp. 145-146) in 1926; the method is employed to solve
numerically a linear Volterra integral equation with convolution kernel found
in the theory of electric circuits.



3.3. Convergence analysis

The first convergence analysis for quadrature methods (3.3) applied to the
linear equation (1.1), exhibiting the relation between the errors of the underly-
ing quadrature formula and the resulting order of the approximation error
e, :=y(t,)—y, of the method, was given by MIKELADZE [65] in 1935. The
main tool in his analysis is a discrete version of Gronwall’s inequality,

n—1

2z, <hC, - z;+C;, n=0,..,N,
i=0

with z;=0, C,>0, C,>>0 (see also below, Section 4). The methods studied by
MIKELADZE are essentially those based on the various Gregory rules. The
author’s motivation for considering these methods lies in the numerical solu-
tion of higher-order linear differential equations: he suggests their being rewrit-
ten as Volterra integral equations of the second kind. An analogous idea is
also used for second-order linear partial differential equations, here, the result-
ing integral equations contain double integrals.

The paper by KRYLOV [54] of 1949 deals also with the quadrature method
(3.3) employing the Gregory rule (in the Russian literature this rule is often
called the Euler-Laplace formula). Moreover, KRYLOV introduces block
methods for the simultaneous computation of the starting values y;.p, (if
g=2), or y.,y2.y3.y4 (if g=4) needed in (3.3). These starting methods are
obtained by choosing sets of g quadrature formulas of the same length ( g +1
abscissas) and with the same degree of precision. (Compare also Wolkenfelt’s
thesis and his paper [94] for these and other starting methods.) These block
methods involve kernel values K(z,s) or k(t,s,y) for s>t which have to be
found by a suitable extrapolation procedure; moreover, a linear (or, in the case
(1.3), a nonlinear) system in R? or in R* has to be solved. Although these
starting methods are chosen so that their orders of accuracy are consistent with
the orders of accuracy of Gregory rules underlying (3.3), there is no conver-
gence analysis. MIKELADZE' s paper [65] of 1951 takes up the ideas of Krylov
and suggests a number of marginal improvements in the implementation of the
methods.

In the early 1950s, explicit Runge-Kutta methods of the form (3.4) were con-
sidered once more, namely in the paper [84] by SuyAMA and NAKAMORI.
Here, the interest was focused on the derivation of the so-called order condi-
tions which the parameters ¢;,b;, and g;; in (3.4a), (3.4b) have to satisfy if the
method is to have (local) order p=4. In other words, suppose that the lag
term approximations £, in (3.4a) and (3.4b) are replaced by the exact lag term
F, introduced in (3.5) (i.e., the given integral equation (1.3) is solved locally on
{ts.t, +1], by assuming that y(r) be known exactly on [0,7,]); let the resulting
approximation at 1 =1, ,, be denoted by y,.;. What algebraic equations do
the parameters ¢, b, and q;; have to satisfy in order that
[¥(tn +1)—Va +1|<Ch?, where C is a constant not depending on h ? These
order conditions are derived by Taylor expansion techniques (compare also
[18] for a more elegant approach which is based on certain concepts from
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graph theory and which extends the analogous theory of Butcher for Runge-
Kutta methods in ordinary differential equations). However, questions regard-
ing the convergence or the practical implementation of (3.4) (including the
problem of how to generate suitable lag term approximations F,) are not
touched upon.

The first systematic convergence analysis for explicit Runge-Kutta methods
(3.4) is due to PouzeT and may be found in his thesis of 1962 and in [74]; see
also GAMONDI and ITALIANI [34] for closely related results. POUZET showed
that if the lag term approximations F, are based on quadrature formulas
characterized by the weights b, and the abscissas #, +¢;h (i=1,...,4; k<<n), and
if the Runge-Kutta method (3.4) has local order p =4, then the approximation
error e, :=y(1,)—y, satisfies max|e,| = O(h?), as h|0, Nh=const. Analogous

results hold for other, suitably chosen lag term approximations.

A different class of explicit Runge-Kutta methods for (1.3) was introduced
by BEL’TYUKOV [9] in 1965. Here, the underlying arrays of parameters are no
longer those given by a Runge-Kutta method for a differential equation. We
now have, instead of (3.4),

Y+l — i:;x(tn+l)+h 'ib,’k(f,,‘*‘d,’h, I,,+Cih, yn,l) s
i=1

with

- =1
Yui = Fultyteh)+h X a kb, +dh, t,+ch, y, ) (j=1,...,m) .
J=1
BEL'TYUKOV analyzed the methods corresponding to m=<3 and satisfying the
conditions d; =¢; for all values of i. Even though these methods require fewer
kernel evaluations than the methods (3.4) studied by POUZET it turns out (cf.
[18]) that the construction of higher-order methods (of order p =4) is quite
difficult; in particular, there does not exist an explicit Bel’tyukov method with
p =m =4 (recall that, as shown by POUZET p =m =4 is possible for (3.4)).

As far as high-order methods of Runge-Kutta type are concerned, we note
that SCHOEDON [80] in 1970 studied a class of such methods based on certain
Hermite quadrature formulas.

Returning briefly to linear multistep methods of the form (3.3), we point out
the paper [52] by JONES of 1961: this paper contains a detailed convergence
analysis of the trapezoidal method when applied to second-kind integral equa-
tions with convolution kernels (or to systems of such equations). Later analyses
of linear multistep methods (3.3) were largely influenced by the fundamental
work of DanLQuisT and HENRICI on linear multistep methods for ordinary
differential equations (dating from the late 1950s and the early 1960s). The
first papers to extend their theory to Volterra integral equations are due to
SPOHN [83] (1965) and to KoBAYASI [53] (1966).

Up to the early 1960s, almost no attention had been paid to the numerical
solution of Volterra integral equations (1.2) and (1.4) whose kernels contain a
weak (integrable) singularity of the form (r —s) %, with 0<<a<C1. PRAsaD [75,
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p. 58] briefly mentions the possibility of rewriting (1.2), with rational
a=p/q (p,geN ; p and ¢ coprime), as an equation with regular kernel; the
underlying change of variable implies that the upper limit of integration in
(1.1) now becomes ¢'/4. However, he gives no further details. WAGNER [91] in
1954 seems to be the first source suggesting in detail a numerical method for
(1.3) and (1.4). Using, and at the same time generalizing, ideas contained
implicitly in the paper [48] of HUBER (1939), he employs continuous, piecewise
quadratic polynomials to approximate the solution to the given integral equa-
tion; this approximation is determined by so-called collocation techniques.
While the application of this method to Volterra integral equations arising in
heat conduction problems is given particular attention, there is no analysis of
its convergence properties.

The subsequent development of numerical methods for Volterra integral
equations possessing weakly singular kernels was based mainly on the work of
YOUNG [96] of 1954 on product integration techniques. We refer the reader to
the relevant references in [59] and [15] for additional details.

3.4. Conclusion

When surveying the contributions to the numerical solution of second-kind
Volterra integral equations up to about 1965 one is perhaps struck by the fact
that, with the possible exception of WHITTAKER [92] and MIKELADZE [65], they
all deal with specific examples of methods and that a more unified view is still
very much lacking. It seems interesting to observe that there emerges a rather
different picture if one looks at the early development of numerical methods
for Fredholm integral equations of the second-kind,

T
y(0) = g()+A[K@s)y(s)ds, tel:
0

here, the two earliest methods, Bateman’s method ([7]) of 1922 and Nystroms
method ([71]) of 1928 represent very general approaches to generating numeri-
cal approximations to the solutions of such equations.

We conclude this section by mentioning that early surveys of numerical
methods for Volterra and Fredholm integral equations (containing most. but
not all. of the methods described here) may be found in BERNIER [10], Fox
and GOoDWIN [32], MAYERS [63], and NOBLE [69)]. In addition, see also [85]
and the extensive bibliography [70] by NOBLE.

4. RECENT DEVELOPMENTS

For the sake of completeness we name a few references to recent work on the

approximate solution of second-kind Volterra equations.

(i) A very general analysis of quadrature methods (3.3) for (1.1) and (1.3)
was recently given by WOLKENFELT [94] (see also his thesis of 1981). Gen-
eralizations of such methods are discussed in WOLKENFELT [95] and in
VAN DER HOUWEN and TE RIELE [46], [47]. Compare also BRUNNER and
VaN DER HouweN [19, Ch. 3]. Fractional quadrature methods for
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(i)

(iit)

(iv)

)

(vi)

equations with weakly singular kernels were introduced by LUBICH [62].
A particular class of implicit Runge-Kutta methods (3.4) was analyzed in
detail by DE HooG and WEIss [45]. The general Runge-Kutta theory for
Volterra equations (1.3) with smooth kernels was established by BRUNNER,
HAIRER and NorserT [18]; a comprehensive convergence analysis for gen-
eral one-step methods (including Runge-Kutta methods of Pouzet and
Bel'tyukov type) is due to HAIRER, LUBICH and NeRseTT [38]. LuBICH
[61] extended the Runge-Kutta theory of [18] to weakly singular Volterra
equations (1.4).
A recent account of collocation methods based on polynomial splines may
be found in BRUNNER [[4]; see also [16]. While these papers focus on Vol-
terra equations with regular kernels, [15] and [17] are concerned with the
problem of generating high-order approximations to (nonsmooth) solution
of equations with weakly singular kernels. Compare also TE RIELE [78]
where non-polynomial spline functions are employed to obtain such
approximations.
Abstract convergence analysis (including numerous examples) of discreti-
zation methods for second-kind Volterra integral equations may be found
in Scotr [81] and in DixoN and McKEE [28)].
There still exists only very few relatively general analyses of numerical sta-
bility of methods for second-kind Volterra equations. The two principal
ones, dealing with convolution kernels, are those by LusicH [60] (for qua-
drature methods) and by HAIRER and LusicH [37] (for Runge-Kutta
methods (3.4)). As regards equations with more general kernels, we refer
to [19, Ch. 7]. The problem of numerical stability when solving weakly
singular Volterra equations is still very much in the open; see, however,
LusicH [62].
The principal tool in the convergence analysis of numerical methods is the
discrete Gronwall inequality,

z, < Cih'™e "zl(n—i)-"z,-+cz, n=0,...,N, 0<a<l,

i=0

where z; =0, C, >0, C;>0, and Nh <c<<co. As mentioned in Section
3, the first occurrence of such an inequality (with a=0) seems to be in
MIKELADZE [65, p. 259]. Of the more recent contributions in this area we
mention the ones by JONEs [50] and, especially, by BEESACK [8]. The case
O<a<1 is treated in detail in MCKEE [64], DixoN and McKEE [27], and
Scorr [81].

(vii) Recent surveys of numerical methods for Volterra integral equations may

be found in TE RIELE [77], BRUNNER [13], and BAKER [5]. The proceedings
[24]), [6] and [41] provide a good indication as to the current activities in
the numerical analysis of Volterra equations. The first comprehensive
monograph on the numerical treatment of Volterra (and Fredholm)
integral equations, BAKER [4], is of quite recent origin: it appeared in
1977. More recent treatises are LINZ [57] and BRUNNER and VAN DER
HouweN [19].
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5. AUTOMATIC COMPUTER CODES

The development of efficient and reliable software for second-kind Volterra

integral equations is a very new activity (compare the comments in [30, p. 13];

see also DELVES [23] and the article by MILLER in [24, pp. 247-256]). At the

time of writing, both the IMSL and NAG libraries did not contain any pro-
cedures for such equations. For historical reasons we mention the collection of

ALGOL procedures [76] where one finds a number of non-automatic codes

based on Pouzet’s work on Runge-Kutta methods and Adams-type quadrature

methods. In addition see also [88].

In the following we list some of the recently developed codes involving local
or global error estimation and/or automatic stepsize change.

(i) The code of Bownds and Appelbaum [12] is based on kernel approxima-
tion techniques, the resulting integral equation is then equivalent to a sys-
tem of (nonlinear) ordinary differential equations which are solved by a
standard Adams or Runge-Kutta-Fehlberg code. See also the pertinent
comments in [82] on the choice of the differential equation code if the sys-
tem turns out to be stiff.

(i) Codes using specific quadrature methods of the form (3.3) were written by
LoGAN [59] (Simpson’s method, with a block-by-block option); Hock [44]
(midpoint method, followed by extrapolation techniques); KUNKEL [55],
WiLLiaMs and MCcKEE [93], and Jones [51] (predictor-corrector tech-
niques). The only automatic code for weakly singular equations (1.4) with
a=1% is due to LoGAN [59] (product Simpson’s method, used in block-by-
block mode).

(iii) The following codes employ Runge-Kutta type methods: TANFULLA and
RIBIGHINI [86] (explicit, embedded Pouzet methods of orders 4 and 5);
DUNCAN [29] (explicit, embedded 6-stage and 8-stage methods of Pouzet
type and with orders 5 and 6); SCHLICHTE [79] (implicit method of DE
HooG and WEiss [45]); HAIRER, LuBicH and SCHLICHTE [39] (explicit 4-
stage Pouzet method of order 4, combined with fast Fourier transform
techniques; this method is devised for equations with convolution ker-
nels); and BLoM and BRUNNER [11] (implicit Pouzet-type methods of vari-
able orders, combined with discretized iterated collocation; the resulting
local superconvergence properties are used to obtain error estimates). All
of these codes are designed for Volterra integral equations possessing reg-
ular (bounded) kernels.

A more detailed description of the above codes may be bound in [19, Ch. 8].
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